Perfect Square Trinomials $a^2 + 2ab + b^2 = (a + b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$ $a^2 - 2ab + b^2 = (a - b)^2$ $a^2 - b^2 = (a + b)(a - b)$ $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ $b^2 = b^2 =$	Factoring —	11313 1 01111414 31166		
Difference of Squares $a^2 - b^2 = (a + b)(a - b)$ Difference of Cubes $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Linear Formulas $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope - intercept form $y = mx + b$ Point - slope form $y - y_1 = m(x - x_1)$ Standard form $Ax + By = C$ Quadratic Formulas $\frac{y - b^2}{2a}$ Standard Form $f(x) = ax^2 + bx + c$ Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $\left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$ Other Equations Circle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas Compound Interest n times per year $A = P\left(1 + \frac{r}{n}\right)^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m} = \frac{b^m}{n}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b MP = p \log_b M$	-			$a^2 + 2ab + b^2 = (a + b)^2$
Difference of Cubes $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Linear Formulas				$a^2 - 2ab + b^2 = (a - b)^2$
Difference of Cubes $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$ Linear Formulas	Difference of Squares			. ,
Linear Formulas Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope intercept form $y = mx + b$ Point – slope form $y - y_1 = m(x - x_1)$ Standard form $Ax + By = C$ Quadratic Formulas Standard Form $f(x) = ax^2 + bx + c$ Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $column{2}{c} Column{2}{c} Column{2}{c}$	Difference of Cubes			
Linear Formulas Slope $m = \frac{y_2 - y_1}{x_2 - x_1}$ Slope — intercept form $y = mx + b$ Point — slope form $y = y = mx + b$ Point — slope form $y = y = mx + b$ Standard form $y = y = mx + b$ Quadratic Formulas Standard Form $y = y = mx + b$ Vertex Form $y = y = mx + b$ Quadratic formula $y = x + bx + c$ Vertex Form $y = x + bx + c$ Quadratic formula $y = x + bx + c$ Quadratic formula $y = x + bx + c$ Quadratic formula $y = x + bx + c$ Other Equations Circle $y = x + bx + c$ Distance $y = x + bx + c$ Other Equations Circle $y = x + bx + c$ $y = $				
Slope – intercept form $y = mx + b$ Point – slope form $y - y_1 = m(x - x_1)$ Standard form $Ax + By = C$ Quadratic Formulas Standard Form $f(x) = ax^2 + bx + c$ Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $\left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$ Other Equations Circle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas Compound Interest n times per year $A = P\left(1 + \frac{r}{n}\right)^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m} = \frac{b^m}{n}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b MP = p\log_b M$	Linear Formulas			
Slope – intercept form $y = mx + b$ Point – slope form $y - y_1 = m (x - x_1)$ Standard form $Ax + By = C$ Quadratic Formulas Standard Form $f(x) = ax^2 + bx + c$ Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $(-\frac{b}{2a}, f(-\frac{b}{2a}))$ Other Equations Circle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = (\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$ Interest Formulas Compound Interest n times per year $A = P(1 + \frac{r}{n})^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent $\frac{b^{-x}}{b^m}$ Negative exponent $\frac{b^{-x}}{b^m} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b MP = p\log_b M$	Slope			$m = \frac{y_2 - y_1}{y_2 - y_1}$
Standard form Ax + By = C Quadratic Formulas Standard Form $f(x) = ax^2 + bx + c$ Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $(-\frac{b}{2a}, f(-\frac{b}{2a}))$ Other Equations Circle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas Compound Interest n times per year $A = P\left(1 + \frac{r}{n}\right)^{nt}$ Continuously Compounded Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m} = b^{\frac{m}{n}}$ Negative exponent $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property	Slope – intercept form			
Quadratic FormulasStandard Form $f(x) = ax^2 + bx + c$ Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $\left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$ Other EquationsCircle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest FormulasCompound Interest n times per year $A = P(1 + \frac{r}{n})^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and LogarithmsRational Exponent $\sqrt[n]{b^m} = \frac{b^m}{n}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Point – slope form			$y - y_1 = m (x - x_1)$
Standard Form $f\left(x\right) = ax^2 + bx + c$ Vertex Form $f\left(x\right) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $\left(-\frac{b}{2a}, f\left(-\frac{b}{2a}\right)\right)$ Other Equations Circle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas $Compound Interest n times per year A = P\left(1 + \frac{r}{n}\right)^{nt} Continuously Compounded A = Pe^{rt} Exponents and Logarithms Rational Exponent $	Standard form			Ax + By = C
Vertex Form $f(x) = a(x - h)^2 + k$ Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $\left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$ Other Equations Circle $(x - h)^2 + (y - k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas $Compound Interest n times per year A = P\left(1 + \frac{r}{n}\right)^{nt} Continuously Compounded A = Pe^{rt} Exponents and Logarithms Rational Exponent \qquad \sqrt[n]{b^m} = \frac{m}{n} \qquad \text{Negative exponent} \qquad b^{-x} = \frac{1}{b^x} Product property \log_b MN = \log_b M + \log_b N Quotient property \log_b MP = \log_b M - \log_b N Power property$	Quadratic Formulas —			
Quadratic formula $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ Vertex formula $\left(-\frac{b}{2a}, f(-\frac{b}{2a})\right)$ Other Equations Circle $(x-h)^2 + (y-k)^2 = r^2$ Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas $Compound Interest \textit{n times} per year A = P\left(1 + \frac{r}{n}\right)^{nt} Continuously Compounded A = Pe^{rt} Exponents and Logarithms Rational Exponent \qquad \sqrt[n]{b^m} = \frac{m}{n} \qquad \text{Negative exponent} \qquad b^{-x} = \frac{1}{b^x} Product property \log_b MN = \log_b M + \log_b N Quotient property \log_b \frac{M}{N} = \log_b M - \log_b N Power property \log_b M^p = p \log_b M$	Standard Form			$f(x) = ax^2 + bx + c$
Vertex formula $\left(-\frac{b}{2a},f\left(-\frac{b}{2a}\right)\right)$ Other Equations Circle $(x-h)^2+(y-k)^2=r^2$ Distance $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ Midpoint $M=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$ Interest Formulas Compound Interest n times per year $A=P\left(1+\frac{r}{n}\right)^{nt}$ Continuously Compounded $A=Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m}=b^{\frac{m}{n}} \qquad \text{Negative exponent} \qquad b^{-x}=\frac{1}{b^x}$ Product property $\log_b MN=\log_b M+\log_b N$ Quotient property $\log_b \frac{M}{N}=\log_b M-\log_b N$ Power property $\log_b M^p=p\log_b M$	Vertex Form			$f(x) = a(x - h)^2 + k$
Vertex formula $\left(-\frac{b}{2a},f\left(-\frac{b}{2a}\right)\right)$ Other Equations Circle $(x-h)^2+(y-k)^2=r^2$ Distance $d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ Midpoint $M=\left(\frac{x_1+x_2}{2},\frac{y_1+y_2}{2}\right)$ Interest Formulas Compound Interest n times per year $A=P\left(1+\frac{r}{n}\right)^{nt}$ Continuously Compounded $A=Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m}=b^{\frac{m}{n}} \qquad \text{Negative exponent} \qquad b^{-x}=\frac{1}{b^x}$ Product property $\log_b MN=\log_b M+\log_b N$ Quotient property $\log_b \frac{M}{N}=\log_b M-\log_b N$ Power property $\log_b M^p=p\log_b M$	Quadratic formula			$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Circle $ (x-h)^2 + (y-k)^2 = r^2 $ Distance $ d = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2} $ Midpoint $ M = \left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right) $ Interest Formulas $ A = P\left(1+\frac{r}{n}\right)^{nt} $ Compound Interest n times per year $ A = Pe^{rt} $ Exponents and Logarithms $ A = Pe^{rt} $ Exponents and Logarithms $ A = Pe^{rt} $ Product property $ A = \frac{1}{b^x} $ Power property $ A = \frac{1}{b^x} $ Quotient property $ A = \frac{1}{b^x} $ Power property $ A = \frac{1}{b^x} $ Pro	Vertex formula			
Distance $d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$ Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas $A = P\left(1 + \frac{r}{n}\right)^{nt}$ Compound Interest n times per year $A = Pe^{rt}$ Exponents and Logarithms $A = Pe^{rt}$ Rational Exponent $\frac{n}{\sqrt[n]{b^m}} = b^{\frac{m}{n}}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Other Equations ————			
Midpoint $M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ Interest Formulas Compound Interest n times per year $A = P\left(1 + \frac{r}{n}\right)^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m} = b^{\frac{m}{n}}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b M = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Circle			$(x-h)^2 + (y-k)^2 = r^2$
Interest Formulas Compound Interest n times per year $A = P \left(1 + \frac{r}{n} \right)^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m} = b^{\frac{m}{n}}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Distance			$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$
Compound Interest n times per year $A = P \left(1 + \frac{r}{n} \right)^{nt}$ Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent	Midpoint			$M = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$
Continuously Compounded $A = Pe^{rt}$ Exponents and Logarithms Rational Exponent $\sqrt[n]{b^m} = b^{\frac{m}{n}}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Interest Formulas —————			
Rational Exponent $\sqrt[n]{b^m} = b^{\frac{m}{n}}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Compound Interest <i>n times</i> per year	ſ		$A = P\left(1 + \frac{r}{n}\right)^{nt}$
Rational Exponent $\sqrt[n]{b^m} = b^{\frac{m}{n}}$ Negative exponent $b^{-x} = \frac{1}{b^x}$ Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Continuously Compounded			$A = Pe^{rt}$
Product property $\log_b MN = \log_b M + \log_b N$ Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Exponents and Logarithms ——			
Quotient property $\log_b \frac{M}{N} = \log_b M - \log_b N$ Power property $\log_b M^p = p \log_b M$	Rational Exponent	$\sqrt[n]{b^m} = b^{\frac{m}{n}}$	Negative exponent	$b^{-x} = \frac{1}{b^x}$
Power property $\log_b M^p = p \log_b M$	Product property			$\log_b MN = \log_b M + \log_b N$
Power property $\log_b M^p = p \log_b M$	Quotient property			$\log_b \frac{M}{N} = \log_b M - \log_b N$
Change of base $\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$	Power property			
	Change of base			$\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$